Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Reshaping Health Statistics
Article type: Research Article
Authors: Quantin, C.; | Benzenine, E. | Fassa, M. | Hägi, M. | Fournier, E. | Gentil, J.; | Compain, D. | Monnet, E. | Arveux, P.; | Danzon, A.
Affiliations: CHRU Dijon, Service de Biostatistique et d'Informatique Médicale (DIM), Dijon, F-21000, France | Inserm, U866, Dijon, F-21000, France; Univ de Bourgogne, Dijon, F-21000, France | Registre des tumeurs EA 3181, Univ Franche-Comté, Besançon F-25000 | Registre des cancers gynécologiques de Côte d'Or, Centre Georges-François Leclerc, Dijon, F-21000, France | EA 4184, Université de Bourgogne, Dijon, F-21000, France | Service d'hépatologie et de soins intensifs digestifs, hôpital Jean-Minjoz, Besançon, F-25000, France
Note: [] Address for correspondence: Professeur Catherine Quantin, Service de Biostatistique et Informatique Médicale, Centre Hospitalier Universitaire, BP 77908, 21079 Dijon Cedex, France. Tel.: +33 3 80 29 36 29; Fax: +33 3 80 29 39 73; E-mail: [email protected]
Abstract: Context and objective: In France, national estimates of the incidence of cancers are based on mortality data by extrapolating the ratio between observed incidence and mortality in areas covered by cancer registries. The objective of this study is to determine the interest of using the discharge abstracts database gathered in hospitals to estimate breast cancer incidence in two French departments: Côte d'Or and Doubs. Methods: This study concerns the incident breast cancer cases identified in 2004 and 2005 through Côte d'Or and Doubs cancer registries and potential incident breast cancer cases selected through two algorithms in the Medical Information System Program (PMSI – Programme de Médicalisation des Systèmes d'Information) databases. The value of these algorithms was evaluated by probabilistic linkage between data from the anonymous registry and from the PMSI. Results: The first algorithm provides an estimated incidence close to those given by registries, and has a good sensitivity and positive predictive value; the second algorithm overestimates the incidence by about 100%, and has a poor positive predictive value. Conclusion: This study shows the usefulness of the PMSI databases and underlines the interest and difficulties of using these data to estimate cancer incidence. The PMSI database cannot be used as a unique source to estimate breast cancer incidence.
Keywords: Breast cancer, cancer incidence, discharge abstract, sensitivity, positive predictive value, claims databases
DOI: 10.3233/SJI-2012-0742
Journal: Statistical Journal of the IAOS, vol. 28, no. 1-2, pp. 73-85, 2012
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]