Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Korytkowski, Jacek | Wincenciak, Stanisław
Affiliations: Warsaw University of Technology, Electrical Engineering Department, Institute of the Theory of Electrical Engineering and Electrical Measurements, 00-662 Warsaw, Koszykowa 75, Poland
Abstract: An effective method is presented for solving a nonlinear system of partial differential equations that describe the time-dependent electrothermally coupled fields for passage of constant electric current in a three-dimensional conductive medium. A numerical model of this physical phenomenon was obtained by the finite element method, which takes into account the temperature-dependent characteristics describing the material parameters and conditions of heat transmission outside of the analyzed objects. These characteristics and conditions make the problem strongly nonlinear. The solution uses the Newton-Raphson method with the appropriate procedure for determining the Jacobian matrix elements. The main idea of the proposed method is the use of an automatic time step selection algorithm to solve heat conduction equations. The influence of the assumed accuracy value on the final result of the nonlinear calculation is discussed. The theoretical results were confirmed by the numerical experiments performed with selected physical objects.
DOI: 10.3233/SAV-1995-2303
Journal: Shock and Vibration, vol. 2, no. 3, pp. 219-225, 1995
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]