Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: International Conference on Structural Engineering Dynamics – ICEDyn 2011
Article type: Research Article
Authors: Mainenti-Lopes, I. | Souza, L.C.G. | De Sousa, F.L.
Affiliations: National Institute for Space Research, Space Mechanics and Control Division, São Jose dos Campos, SP, Brasil
Note: [] Corresponding author: L.C.G. Souza, National Institute for Space Research, Space Mechanics and Control Division, Av. dos Astronautas, 1758, S J dos Campos, SP, Brasil. E-mail: [email protected]
Abstract: The Attitude Control System (ACS) for Flexible Space Structures (FSS) like rigid-flexible satellite and solar sails demands great reliability, autonomy and robustness. The association of flexible motion and large angle maneuver imply that the FSS dynamics is only captured by complex non-linear mathematical model. As a result, FSS controller performance designed by linear control technique under the hypothesis of rigid dynamic can be degraded. Although vibrations can be suppressed rapidly, the flexibility effect can introduce a tracking error resulting in a minimum attitude acquisition time. On the other hand, faster manoeuvres can excite flexible modes in such a way to make the FSS lose the required pointing accuracy. In the present work, it is shown that a new multi-objective optimization algorithm, called M-GEOreal (Multi-objective Generalized Extremal Optimization with real codification), is a good tool to be used in such kind of problems. The M-GEOreal is a real coded version of the M-GEO evolutionary algorithm. Its performance on finding the gains of a non linear control law is evaluated through its application to the problem of controlling a large angle attitude manoeuvre of a rigid-flexible satellite.. The satellite non-linear model consists of a rigid central hub with a clamped free flexible beam. The multi-objective approach allows optimizing conflicting objective functions like time and energy. As a result, one can find a trade-off solution (non-dominated solutions). These solutions become available to the designer for posterior choice of an individual solution to be implemented. The non-dominated solutions are represented in the design space (Pareto set) and in the objective functions space (Pareto front). Having in mind the complexity of implementing a control algorithm in onboard satellite computer, this preliminary investigation has shown that the non-linear controller based on the M-GEOreal algorithm is a promising technique, since it has satisfied all the ACS requirements. A great advantage of the M-GEOreal procedure is its capacity to deal with non-linear system and designing non-linear controller with constant gains facilitating the on board computer implementation.
Keywords: Nonlinear controller, flexible satellite, multi-objective optimization, Generalized Extremal Optimization
DOI: 10.3233/SAV-2012-0702
Journal: Shock and Vibration, vol. 19, no. 5, pp. 947-956, 2012
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]