Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Adhikari, S. | Bhattacharya, S.
Affiliations: School of Engineering, Swansea University, Swansea, UK | Department of Civil Engineering, University of Bristol, Bristol, UK
Note: [] Corresponding author: Chair of Aerospace Engineering, School of Engineering, Swansea University, Singleton Park, Swansea SA2 8PP, UK. E-mail: [email protected]
Abstract: Offshore wind turbines are considered as an essential part to develop sustainable, alternative energy sources. The structures themselves are both slender and highly flexible, with a subsea foundation typically consisting of a single large diameter monopile. They are subject to intense wind and wave loadings, with the result that significant movement of both the exposed structure and the upper part of the monopile can occur. Although the structures are intended for design life of 25 to 30 years, very little is known about the long term behaviour of these structures. This paper characterizes the dynamic behaviour of these structures. A simplified approach has been proposed for the free vibration analysis of wind turbines taking the effect of foundation into account. The method is based on an Euler-Bernoulli beam-column with elastic end supports. The elastic end-supports are considered to model the flexible nature of the interaction of these systems with the foundation. A closed-form expression of the characteristic equation governing all the natural frequencies of the system has been derived. Theoretical developments are explained by practical numerical examples. Analytical as well as a new experimental approach has been proposed to determine the parameters for the foundation. Some design issues of wind turbine towers are discussed from the point of view of the foundation parameters.
Keywords: Wind turbine, natural frequencies, foundation stiffness, structural dynamics, offshore
DOI: 10.3233/SAV-2012-0615
Journal: Shock and Vibration, vol. 19, no. 1, pp. 37-56, 2012
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]