Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: 2nd International Conference on Vibro-Impact Systems (ICoVIS), Sanya, China, 6–9 January, 2010
Article type: Research Article
Authors: Zhang, Zhiwei | Singh, Rajendra | Crowther, Ashley R.
Affiliations: Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Leicestershire LE11 3TU, UK | Acoustics and Dynamics Laboratory, Mechanical Engineering Department, The Ohio State University, Columbus, OH, USA
Note: [] Corresponding author. E-mail: [email protected]
Abstract: Nonlinear torsional models are used to analyze automotive transmission rattle problems and find solutions to reduce noise, vibration and dynamic loads. The torsional stiffness and inertial distribution of such systems show that the underlying mathematical problem is numerically stiff. In addition, the clearance nonlinearities in the gear meshes introduce discontinuous functions. Both factors affect the efficacy of time domain integration and smoothening functions are widely used to overcome computational difficulties and improve the simulation. In this paper, alternate smoothening functions are studied for their influence on the numerical solutions and their impact on global convergence and computation times. In particular, four smoothening functions (arctan, hyperbolic-cosine, hyperbolic-tan and quintic-spline) are applied to a five-degree-of-freedom generic torsional system with two backlash (clearance) elements. Each function is assessed via a global convergence metric across an excitation map (a design of experiment). Regions of the excitation map, along with multiple solutions, are studied and the implications to assessing convergence are critically examined.~ It is observed that smoothening functions do not lead to better convergence in many cases. The smoothening parameter needs to be carefully selected, or over-smoothened solutions may be found. The system studied is representative of a typical automotive rattle problem and it was found that benefits were limited from applying such smoothening functions.
Keywords: Vibro-impact systems, non-smooth dynamics, computational issues, smoothening functions, automotive gear rattle
DOI: 10.3233/SAV-2010-0582
Journal: Shock and Vibration, vol. 18, no. 1-2, pp. 397-406, 2011
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]