Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: International Conference on Structural Engineering Dynamics – ICEDyn 2009
Article type: Research Article
Authors: Uhl, T. | Lisowski, W.
Affiliations: Department of Robotics and Mechatronics, AGH University of Science and Technology, Kraków, Poland
Note: [] Corresponding author: Department of Robotics and Mechatronics, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland. Tel./Fax: +48 12 634 3505; Tel.: +48 12 617 3511; E-mails: [email protected], [email protected]
Abstract: One of the important challenges present nowadays in the automotive industry is minimizing of a car components design time. Traditional manufacturing of a prototype is usually a time and a cost consuming process. Alternatively, rapid prototyping techniques can be used in such a case. In the reported research a brake caliper was investigated, since it is an example of an element, which should have very strictly defined structural dynamic properties. As a technique of rapid prototyping of the considered caliper the 3D printing of a mould was selected. A process of the caliper casting with the use of the "prototype" mould is different than the one with the use of the metal form. Thus it is very likely that the both considered types of the caliper would possess different properties from the point of view of structural dynamics. Structural dynamic properties can be analyzed both numerically and experimentally. Simulation of the caliper FE model with uncertain parameters was used to analyze influence of various caliper parameters on its natural frequency values. Modal testing of the caliper was performed with the aim of investigation of applicability of Experimental Modal Analysis for determination of variability of natural frequencies resulting from the manufacturing process. In the course of this research, the natural frequencies of the prototype caliper and the standard caliper were compared.
Keywords: Structural dynamics, finite element modelling, experimental modal analysis, variability of structural properties, rapid prototyping
DOI: 10.3233/SAV-2010-0546
Journal: Shock and Vibration, vol. 17, no. 4-5, pp. 537-550, 2010
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]