Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Mashayekhi, Mohammad Jalali | Vahdati, Nader
Affiliations: School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
Note: [] Corresponding author. Tel.: +65 6790 4332; Fax: +65 6791 1859; E-mail: [email protected]
Abstract: The need to reduce the fuel consumption of vehicles leads to having lighter chassis' with lighter engines yet maintaining engine power. These new design requirements are in contrast with the vibration isolation requirements. To keep the vehicles light yet provide good cabin noise and vibration isolation, requires a new vibration isolation technology. Fluid mounts have been used in the aerospace and the automotive industry to provide cabin noise and vibration reduction for years. With the use of passive fluid mounts, the highest cabin noise and vibration reduction is achieved at a frequency called "Notch Frequency". But typical passive fluid mounts have only one notch frequency. So the best cabin noise and vibration reduction is only achievable at one frequency. In this paper, a new fluid mount design in combination with a tuned vibration absorber is proposed. Bond graph modelling technique is used to model the new fluid mount design. The physical model and simulation results are presented. The effect of the natural frequency of the TVA on the dynamic stiffness of the fluid mount is studied.
Keywords: Fluid mount, tuned vibration absorber
DOI: 10.3233/SAV-2009-0489
Journal: Shock and Vibration, vol. 16, no. 6, pp. 565-580, 2009
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]