Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Malgaca, L. | Karagülle, H.
Affiliations: Department of Mechanical Engineering, Dokuz Eylül University, 35100, Bornova / Izmir, Turkey
Note: [] Corresponding author. Tel.: +90 232 3883138/130; Fax: +90 232 3887868; E-mail: [email protected]
Abstract: Piezoelectric smart structures can be modeled using commercial finite element packages. Integration of control actions into the finite element model solutions (ICFES) can be done in ANSYS by using parametric design language. Simulation results can be obtained easily in smart structures by this method. In this work, cantilever smart structures consisting of aluminum beams and lead-zirconate-titanate (PZT) patches are considered. Two cases are studied numerically and experimentally in parallel. In the first case, a smart structure with a single PZT patch is used for the free vibration control under an initial tip displacement. In the second case, a smart structure with two PZT patches is used for the forced vibration control under harmonic excitation, where one of the PZT patches is used as vibration generating shaker while the other is used as vibration controlling actuator. For the two cases, modal analyses are done using chirp signals; Control OFF and Control ON responses in the time domain are obtained for various controller gains. A non-contact laser displacement sensor and strain gauges are utilized for the feedback signals. It is observed that all the simulation results agree with the experimental results.
Keywords: Smart structures, active control, piezoelectric, finite element method
DOI: 10.3233/SAV-2009-0477
Journal: Shock and Vibration, vol. 16, no. 4, pp. 401-415, 2009
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]