Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Cai, Jianping | Li, Y.P.
Affiliations: Department of Mathematics, Zhangzhou Teachers College, Fujian 363000, P. R. China. E-mail: [email protected] | Department of Mathematics, Zhongshan University, Guangzhou 510275, P.R. China. E-mail: [email protected]
Abstract: A method of approximate potential is presented for the study of certain kinds of strongly nonlinear oscillators. This method is to express the potential for an oscillatory system by a polynomial of degree four such that the leading approximation may be derived in terms of elliptic functions. The advantage of present method is that it is valid for relatively large oscillations. As an application, the elapsed time of periodic motion of a strongly nonlinear oscillator with slowly varying parameters is studied in detail. Comparisons are made with other methods to assess the accuracy of the present method.
Keywords: strongly nonlinear oscillator, approximate potential, slowly varying parameter
Journal: Shock and Vibration, vol. 10, no. 5-6, pp. 379-386, 2003
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]