Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Lee, Usik
Affiliations: Department of Mechanical Engineering, Inha University 253 Yonghyun-Dong, Nam-Ku, Incheon 402-751, South Korea. Tel.: +82 32 860 7318; Fax: +82 32 866 1434; E-mail: [email protected]
Abstract: Though there have been many efforts to make the inverse problem of damage identification small by reducing its finite element degrees-of-freedom, there have been few efforts to make it small by reducing its spatial domain of problem. Thus, as the extension of the author's previous work in which the damage identification algorithm was formulated from the dynamic stiffness equation of motion, the present study introduces a spectral element model (SEM)-based reduced-domain method (RDM) of damage identification. In the present RDM, a three-steps process is used to reduce the domain of problem by iteratively searching out and removing damage-free parts of structure in the course of the damage identification analysis. To validate the present RDM, numerically simulated damage identification tests are conducted. The experimental tests for a damaged cantilevered beam specimen show that the present RDM can fairly well locates and quantifies all local damages (i.e., slots) placed along the beam specimen.
Keywords: structural damage, damage identification, reduced-domain method, beam, spectral element model, frequency response function
Journal: Shock and Vibration, vol. 10, no. 5-6, pp. 313-324, 2003
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]