Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Goncalves, Fernando D. | Ahmadian, Mehdi
Affiliations: Advanced Vehicle Dynamics Laboratory, Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA
Note: [] Corresponding author: Tel.: +1 540 231 4920; Fax: +1 540 231 9100; E-mail: [email protected]
Abstract: Various control policies, such as skyhook and groundhook control, have often been considered for semi-active vehicle suspensions. Past studies have shown the performance limitations of these policies, as well as others that have been considered for vehicle applications. This study will provide a look into an alternative control technique called "hybrid control", which attempts to merge the performance benefits of skyhook and groundhook control. The results of this study are based on an experimental evaluation of hybrid control using a quarter-car rig and a magneto-rheological damper. The control policy is employed and evaluated under a steady-state or pure tone input, and a transient or step input. Peak-to-peak displacement and peak-to-peak acceleration are used to evaluate performance. The results indicate that hybrid control can offer benefits to both the sprung mass and the unsprung mass. The steady-state results reveal that hybrid control can be used to reduce the peak-to- peak displacements and accelerations of both bodies. The transient evaluation shows that hybrid control can be effective at reducing the peak-to-peak displacement of the sprung mass.
Journal: Shock and Vibration, vol. 10, no. 1, pp. 59-69, 2003
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]