Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: COBEM 2001
Article type: Research Article
Authors: Arndt, Marcos | Machado, Roberto Dalledone | Hecke, Mildred Ballin
Affiliations: Federal University of Paraná, Graduated Course in Numerical Methods for Engineering, Caixa Postal 19011 -- CEP 81531-990 -- Curitiba, PR, Brazil. E-mail: [email protected]; [email protected]; [email protected]
Abstract: This paper introduces a new type of Finite Element Method (FEM), called Composite Element Method (CEM). The CEM was developed by combining the versatility of the FEM and the high accuracy of closed form solutions from the classical analytical theory. Analytical solutions, which fulfil some special boundary conditions, are added to FEM shape functions forming a new group of shape functions. CEM results can be improved using two types of approach: h-version and c-version. The h-version, as in FEM, is the refinement of the element mesh. On the other hand, in the c-version there is an increase of degrees of freedom related to the classical theory (c-dof). The application of CEM in vibration analysis is thus investigated and a rod element is developed. Some samples which present frequencies and vibration mode shapes obtained by CEM are compared to those obtained by FEM and by the classical theory. The numerical results show that CEM is more accurate than FEM for the same number of total degrees of freedom employed. It is observed in the examples that the c-version of CEM leads to a super convergent solution.
Keywords: composite element method, vibration analysis, finite element method
Journal: Shock and Vibration, vol. 9, no. 4-5, pp. 155-164, 2002
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]