Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Affiliations: Mechanical Engineering Department, University of Maryland, College Park, MD 20742, USA
Abstract: A new class of surface damping treatment is proposed to provide effective means for attenuating undesirable structural vibrations. The proposed treatment relies in its operation on the use of smart damping treatments which consist of integrated arrays of constrained visco-elastic damping layers that are controlled passively by a specially arranged network of permanent magnets. The interaction between the magnets and the visco-elastic layers aims at enhancing the energy dissipation characteristics of the damping treatments. In this manner, it would be possible to manufacture structures that are light in weight which are also capable of meeting strict constraints on structural vibration when subjected to unavoidable disturbances. Emphasis is placed here on introducing the concept and the basic performance characteristics of this new class of smart Magnetic Constrained Layer Damping (MCLD) treatments. Comparisons are also presented with conventional Passive Constrained Layer Damping (PCLD) in order to determine the merits and limitation of the MCLD treatments.
Keywords: passive constrained layer damping, magnetic constrained layer damping and permanent magnets
Journal: Shock and Vibration, vol. 7, no. 2, pp. 81-90, 2000
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]