Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Zhang, Ziqi; *
Affiliations: School of Science and Technology, Nottingham Trent University, 50 Shakespeare Street, Nottingham, NG1 4FQ, UK. E-mail: [email protected]
Note: [*] This work was carried out while the author was a member of the Department of Computer Science, University of Sheffield.
Abstract: This article introduces TableMiner+, a Semantic Table Interpretation method that annotates Web tables in a both effective and efficient way. Built on our previous work TableMiner, the extended version advances state-of-the-art in several ways. First, it improves annotation accuracy by making innovative use of various types of contextual information both inside and outside tables as features for inference. Second, it reduces computational overheads by adopting an incremental, bootstrapping approach that starts by creating preliminary and partial annotations of a table using ‘sample’ data in the table, then using the outcome as ‘seed’ to guide interpretation of remaining contents. This is then followed by a message passing process that iteratively refines results on the entire table to create the final optimal annotations. Third, it is able to handle all annotation tasks of Semantic Table Interpretation (e.g., annotating a column, or entity cells) while state-of-the-art methods are limited in different ways. We also compile the largest dataset known to date and extensively evaluate TableMiner+ against four baselines and two re-implemented (near-identical, as adaptations are needed due to the use of different knowledge bases) state-of-the-art methods. TableMiner+ consistently outperforms all models under all experimental settings. On the two most diverse datasets covering multiple domains and various table schemata, it achieves improvement in F1 by between 1 and 42 percentage points depending on specific annotation tasks. It also significantly reduces computational overheads in terms of wall-clock time when compared against classic methods that ‘exhaustively’ process the entire table content to build features for inference. As a concrete example, compared against a method based on joint inference implemented with parallel computation, the non-parallel implementation of TableMiner+ achieves significant improvement in learning accuracy and almost orders of magnitude of savings in wall-clock time.
Keywords: Web table, named entity recognition, named entity disambiguation, Relation Extraction, linked data, Semantic Table Interpretation, table annotation
DOI: 10.3233/SW-160242
Journal: Semantic Web, vol. 8, no. 6, pp. 921-957, 2017
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]