Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Science-Driven Cloud Computing
Article type: Research Article
Authors: Srirama, Satish Narayana | Batrashev, Oleg | Jakovits, Pelle | Vainikko, Eero
Affiliations: Distributed Systems Group, Institute of Computer Science, University of Tartu, J. Liivi 2, Tartu, Estonia. E-mails: {srirama, olegus, jakovits, eero}@ut.ee
Note: [] Corresponding author.
Abstract: Cloud computing, with its promise of virtually infinite resources, seems to suit well in solving resource greedy scientific computing problems. To study the effects of moving parallel scientific applications onto the cloud, we deployed several benchmark applications like matrix–vector operations and NAS parallel benchmarks, and DOUG (Domain decomposition On Unstructured Grids) on the cloud. DOUG is an open source software package for parallel iterative solution of very large sparse systems of linear equations. The detailed analysis of DOUG on the cloud showed that parallel applications benefit a lot and scale reasonable on the cloud. We could also observe the limitations of the cloud and its comparison with cluster in terms of performance. However, for efficiently running the scientific applications on the cloud infrastructure, the applications must be reduced to frameworks that can successfully exploit the cloud resources, like the MapReduce framework. Several iterative and embarrassingly parallel algorithms are reduced to the MapReduce model and their performance is measured and analyzed. The analysis showed that Hadoop MapReduce has significant problems with iterative methods, while it suits well for embarrassingly parallel algorithms. Scientific computing often uses iterative methods to solve large problems. Thus, for scientific computing on the cloud, this paper raises the necessity for better frameworks or optimizations for MapReduce.
Keywords: Scientific computing, cloud computing, MapReduce, benchmarking, iterative solvers, parallel programming
DOI: 10.3233/SPR-2011-0320
Journal: Scientific Programming, vol. 19, no. 2-3, pp. 91-105, 2011
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]