Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Ltaief, Hatem | Kurzak, Jakub | Dongarra, Jack; ; ; | Badia, Rosa M.
Affiliations: Department of Electrical Engineering and Computer Science, University of Tennessee, TN, USA | Computer Science and Mathematics Division, Oak Ridge National Laboratory, TN, USA | School of Mathematics and School of Computer Science, University of Manchester, Manchester, UK | Barcelona Supercomputing Center – Centro Nacional de Supercomputación, Consejo Nacional de Investigaciones Cientificas, Barcelona, Spain
Note: [] Corresponding author. E-mail: [email protected].
Abstract: The objective of this paper is to describe, in the context of multicore architectures, three different scheduler implementations for the two-sided linear algebra transformations, in particular the Hessenberg and Bidiagonal reductions which are the first steps for the standard eigenvalue problems and the singular value decompositions respectively. State-of-the-art dense linear algebra softwares, such as the LAPACK and ScaLAPACK libraries, suffer performance losses on multicore processors due to their inability to fully exploit thread-level parallelism. At the same time the fine-grain dataflow model gains popularity as a paradigm for programming multicore architectures. Buttari et al. (Parellel Comput. Syst. Appl. 35 (2009), 38–53) introduced the concept of tile algorithms in which parallelism is no longer hidden inside Basic Linear Algebra Subprograms but is brought to the fore to yield much better performance. Along with efficient scheduling mechanisms for data-driven execution, these tile two-sided reductions achieve high performance computing by reaching up to 75% of the DGEMM peak on a 12000×12000 matrix with 16 Intel Tigerton 2.4 GHz processors. The main drawback of the tile algorithms approach for two-sided transformations is that the full reduction cannot be obtained in one stage. Other methods have to be considered to further reduce the band matrices to the required forms.
Keywords: Scheduling, multicore, linear algebra, matrix factorization, two-sided transformations
DOI: 10.3233/SPR-2010-0297
Journal: Scientific Programming, vol. 18, no. 1, pp. 35-50, 2010
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]