Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: High Performance Computing with the Cell Broadband Engine
Article type: Research Article
Authors: Rico, Alejandro; | Ramirez, Alex; | Valero, Mateo;
Affiliations: Universitat Politecnica de Catalunya, Barcelona, Spain | Barcelona Supercomputing Center, Barcelona, Spain
Note: [] Corresponding author: Alejandro Rico, Universitat Politecnica de Catalunya, Jordi Girona 1-3, D6-113, 08034 Barcelona, Spain. Tel.: +34 93 40 54097; E-mail: [email protected].
Abstract: There is a clear industrial trend towards chip multiprocessors (CMP) as the most power efficient way of further increasing performance. Heterogeneous CMP architectures take one more step along this power efficiency trend by using multiple types of processors, tailored to the workloads they will execute. Programming these CMP architectures has been identified as one of the main challenges in the near future, and programming heterogeneous systems is even more challenging. High-level programming models which allow the programmer to identify parallel tasks, and the runtime management of the inter-task dependencies, have been identified as a suitable model for programming such heterogeneous CMP architectures. In this paper we analyze the performance of Cell Superscalar, a task-based programming model for the Cell Broadband Engine Architecture, in terms of its scalability to higher number of on-chip processors. Our results show that the low performance of the PPE component limits the scalability of some applications to less than 16 processors. Since the PPE has been identified as the limiting element, we perform a set of simulation studies evaluating the impact of out-of-order execution, branch prediction and larger caches on the task management overhead. We conclude that out-of-order execution is a very desirable feature, since it increases task management performance by 50%. We also identify memory latency as a fundamental aspect in performance, while the working set is not that large. We expect a significant performance impact if task management would run using a fast private memory to store the task dependency graph instead of relying on the cache hierarchy.
Keywords: Scalability, multicore, task-based programming models, Cell BE
DOI: 10.3233/SPR-2009-0269
Journal: Scientific Programming, vol. 17, no. 1-2, pp. 59-76, 2009
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]