Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Aarich, Saad; * | Saidi, Mohamed | Chouaibi, Noureddine | Ziat, Khadija
Affiliations: Department of Chemical Engineering, Faculty of Science and Technology, LAMSE Laboratory, University of Abdelmalek Essaadi, Tangier, Morocco
Correspondence: [*] Corresponding author: Saad Aarich, Department of Chemical Engineering, Faculty of Science and Technology, LAMSE Laboratory, University of Abdelmalek Essaadi, 90000 Tangier, Morocco. E-mail: [email protected].
Abstract: The sillenite-structured bismuth titanate (Bi12TiO20) is thought to be a viable photocatalyst for environmental remediation. However, the performance of Bi12TiO20 as a photocatalyst is severely constrained by its limited range of light sensitivity and the rapid photoinduced electron-hole pair recombination. A practical and effective way to overcome these limitations is to combine Bi12TiO20 with adequate photocatalysts to create heterojunctions. Here, a one-step solvothermal technique is used to synthesize Bi12TiO20/Bi4Ti3O12 heterojunction (BTO). The electric field that exists between B12TiO20, Bi4Ti3O12 and the closed interfacial contacts had a synergistic effect on the constructed composites, which resulted in high charge transfer abilities. Therefore, the BTO heterojunction demonstrated increased photocatalytic efficacy in the presence of ultraviolet irradiation. The MO removal efficiency of optimal BTO was 97.15%, significantly higher than that of pure Bi2O3 (46.9%). Furthermore, the cycling experiment demonstrated that the BTO heterojunction is stable and reusable. The probable mechanism of photocatalytic MO oxidation over BTO heterojunction was studied by various scavengers. The •OH radicals and holes played essential roles in BTO system of photocatalytic oxidation process.
Keywords: Bi12TiO20/Bi4Ti3O12 Heterostructure, photocatalysis reaction, methyl orange removal, UV light
DOI: 10.3233/MGC-230060
Journal: Main Group Chemistry, vol. 23, no. 1, pp. 113-132, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]