Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Algamal, Yousifa; c | Khalil, N.M.a; b; * | Saddiq, Amnad | Baghdadi, Afra Mohammedd
Affiliations: [a] University of Jeddah, College of Science and Arts at Khulais, Department of Chemistry, Jeddah, Saudi Arabia | [b] Refractories, Ceramics and Building Materials Department, National Research Centre, Dokki, Cairo, Egypt | [c] Department of Chemistry, Faculty of Science & Technology, Omduraman Islamic University, Omduraman, Sudan | [d] Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
Correspondence: [*] Corresponding author: N.M. Khalil, Department of Chemistry, Faculty of Science, University of Jeddah, Saudi Arabia, UNITED STATES. E-mail: [email protected].
Abstract: This work aims to prepare and characterize the hydroxyapatite (HAP) nanomaterials from marble wastes (the utilization of the building marble waste for reducing the environmental pollution hazards) and to study its capabilities as antimicrobial and antifungal agents of the prepared nanoparticle. The utilization of the marble waste as a source for calcium chloride and to be reacted with sodium hydrogen phosphate, for synthetization of hydroxyapatite nanoparticles, the prepared material is characterized, tested, and analyzed using X-ray diffraction (XRD), Scan Electron Microscope (SEM) with Energy Dispersive X-Ray analysis (EDAX) techniques. The antimicrobial activity of prepared hydroxyapatite nanomaterial is tested using a well diffusion method with different types of bacteria (Gram-negative): Escherichia. Coli, Salmonella paratyphi, Pseudomonas earuginosa, and Alcaligenes aquatilis and bacteria (Gram- positive): Staphylococcus aureus, and Streptococcacea pneumonia. The antifungal efficacy of HAP nanoparticles is tested for different species of Aspergillus niger, Aspergillus flavus, and Penicillium SP. The diameter of the inhibitory zone shows the sensitivity of the microorganism to HAP nanoparticles in a greater inhibition against Gram- positive Staphylococcus aureus and Streptococcacea pneumonia, at 100% DMSO concentration. The diameter of the inhibition zone was 03.70 mm, when compared with other types of bacteria. The diameter of the inhibitory zone showed the sensitivity of the microorganism to HAP nanoparticles in a greater inhibition against Penicillium SP at 100% DMSO concentration, the inhibition zone diameter was 2.20 mm, when compared with other Aspergillus niger and Aspergillus flavus fungal species. Based on obtained results for the HAP nanoparticles prepared from the marble wastes have antibacterial effects on both Gram-negative (E. coli) and Gram-positive (S. aureus) strains.
Keywords: Hydroxyapatite, marble waste, biological activity, antimicrobial
DOI: 10.3233/MGC-210181
Journal: Main Group Chemistry, vol. 21, no. 3, pp. 865-873, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]