Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Azimzadeh-Sadeghi, Setareh; *
Affiliations: Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
Correspondence: [*] Corresponding author: Setareh Azimzadeh-Sadeghi, Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran. E-mail: [email protected].
Abstract: Electronic and structural features of some of representative chromene derivatives were investigated in this work towards recognizing their anticancer roles. Density functional theory (DFT) calculations were performed to obtain five structures of chromene derivatives with the same skeleton of original structure. In addition to obtaining optimized structural geometries, electronic molecular orbital features were evaluated for the models. Energy levels of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) indicated effects of additional R group pf chromene derivatives on electronic features. Based on such results, it was predicted that one of derivatives, L5, could better participate in interactions with other substances in comparison with other ligand structures. This achievement was obtained based on availability of HOMO and LUMO levels in lower energies easily catchable for electron transferring. On the other hand, L5 was assumed to interact in the weakest mode with other substances. Indeed, the main goal of this work was to examine anticancer activity of the investigated chromene derivatives, in which each of L1–L5 chromene derivatives were analyzed first to recognized electronic and structural features. Next, molecular docking (MD) simulations were performed to examine anticancer role of L1–L5 against methyltransferase cancerous enzyme target. The results indicated that formations of ligand-target complexes could be occurred within different types of interactions and surrounding amino acids of central ligand. In agreement with the achievements of analyses of single-standing L1–L5 compounds, L4-Target was seen as the strongest complex among possible complex formations. Moreover, values of binding energies and inhibition constant indicated that all five chromene derivatives could work as inhibitors of methyltransferase cancerous enzyme by the most advantage for L4 ligand. And as a final remark, details of such anticancer activity were recognized by graphical representations of ligand-target complexes showing types of interactions and involving amino acids in interactions.
Keywords: Chromene, anticancer, methyltransferase, drug design, DFT, molecular docking
DOI: 10.3233/MGC-210136
Journal: Main Group Chemistry, vol. 21, no. 1, pp. 271-278, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]