Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Umstadter, D. | Yu, L. H. | Johnson, E. | Li, D.
Affiliations: Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109-2099 | National Synchrotron Light Source, Brookhaven National Laboratory, Upton, New York 11973
Abstract: In this work we combine elements of chirped pulse amplification (CPA) techniques, now familiar in solid-state lasers, with an amplifier based upon a seeded free-electron laser (FEL). The resulting device would produce amplified pulses of unprecedented brevity at wavelengths shorter than can be currently obtained by any tunable laser system. We use a subharmonically seeded FEL to illustrate the concept. Radiation from a Ti:sapphire laser is frequency-tripled and stretched optically to provide a coherent seed pulse for the FEL. When coupled to an electron beam inside a magnetic wiggler, the seed radiation introduces an additional energy modulation on the electron bunch, which has been prepared with an energy chirp to match the chirp in the optical pulse. The energy modulated electrons are then spatially bunched in a dispersion magnet and introduced to a wiggler configured to be resonant to a harmonic of the seed laser, providing additional frequency multiplication. The coherent radiation produced by these electrons is amplified as it traverses the wiggler and recompressed optically. The preservation of phase coherence provided by this scheme results in a device which can yield 4-fs pulses with 0.3 mJ at a central wavelength of ca. 88 nm, easily the shortest duration amplified pulses produced by any laser. In this paper, we discuss various aspects of the concept, including the generation of short pulses, temporal stretching and compression, and potential applications of the device. The phase distortion during the wide bandwidth FEL amplification is discussed in detail, and is shown to be within the bounds required to produce a 4-fs pulse upon compression.
DOI: 10.3233/XST-1994-4402
Journal: Journal of X-Ray Science and Technology, vol. 4, no. 4, pp. 263-274, 1994
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]