Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Hawryluk, A. M. | Ceglio, N. M.
Affiliations: University of California, Lawrence Livermore National Laboratory, Livermore, California, 94551
Abstract: Soft x-ray projection lithography (SXPL) is an attractive technique for the fabrication of high-speed, high-density integrated circuits. In an SXPL stepper, the x-ray imaging mirrors consist of multilayer coatings deposited onto high precision substrates. The stepper is intended to fabricate ultra-high spatial-resolution structures with a minimum feature size of <0.1 μm. To achieve this resolution, the imaging mirrors must maintain a very precise surface figure while being exposed to x radiation. Failure to achieve and maintain the mirror surface figure will distort the wavefront propagating through the imaging system and will degrade system resolution. The required surface figure accuracy for each imaging mirror depends upon the required resolution, the wavelength, and the optical design. For conventional SXPL stepper designs, the total (peak-to-valley) surface figure error budget per mirror is approximately ±1 nm. Due to material properties at soft x-ray wavelengths and practical fabrication considerations, x-ray multilayer mirrors have limited reflectivities. A fraction of the incident x radiation is absorbed in the multilayer coating. This absorbed radiation constitutes a thermal load on the mirror, thereby distorting its shape and compromising the accuracy of its surface figure. In this paper, we analyze the thermally induced distortion on the imaging optics and conclude that the maximum allowable thermal distortion limits the maximum allowable x-ray power transported to the wafer and limits the minimum acceptable multilayer mirror reflectivity. The penalty for either insensitive x-ray resists or inefficient mirror reflectivity is a decrease in system throughput which cannot be compensated with increased source power either collected by condenser optics or generated by the source.
DOI: 10.3233/XST-1993-4301
Journal: Journal of X-Ray Science and Technology, vol. 4, no. 3, pp. 167-181, 1994
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]