Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Yang, Yunfeng | Guan, Chen; *
Affiliations: Department of Mathematics and Statistics, Northeast Petroleum University, Daqing, China
Correspondence: [*] Corresponding author: Chen Guan, Department of Mathematics and Statistics, Northeast Petroleum University, Daqing, China. E-mail: [email protected].
Abstract: The accurately automatic classification of medical pathological images has always been an important problem in the field of deep learning. However, the traditional manual extraction of features and image classification usually requires in-depth knowledge and more professional researchers to extract and calculate high-quality image features. This kind of operation generally takes a lot of time and the classification effect is not ideal. In order to solve these problems, this study proposes and tests an improved network model DenseNet-201-MSD to accomplish the task of classification of medical pathological images of breast cancer. First, the image is preprocessed, and the traditional pooling layer is replaced by multiple scaling decomposition to prevent overfitting due to the large dimension of the image data set. Second, the BN algorithm is added before the activation function Softmax and Adam is used in the optimizer to optimize performance of the network model and improve image recognition accuracy of the network model. By verifying the performance of the model using the BreakHis dataset, the new deep learning model yields image classification accuracy of 99.4%, 98.8%, 98.2%and 99.4%when applying to four different magnifications of pathological images, respectively. The study results demonstrate that this new classification method and deep learning model can effectively improve accuracy of pathological image classification, which indicates its potential value in future clinical application.
Keywords: Breast cancer pathological image, classification of breast cancer, convolutional neural network, DenseNet-201-MSD, multiple scaling decomposition, BN algorithm
DOI: 10.3233/XST-210982
Journal: Journal of X-Ray Science and Technology, vol. 30, no. 1, pp. 33-44, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]