Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Mouton, Andrea | Breckon, Toby P.b; *
Affiliations: [a] School of Engineering, Cranfield University, Bedfordshire, UK | [b] Department of Computer Science / Engineering, Durham University, Durham, UK
Correspondence: [*] Corresponding author: T.P. Breckon, Department of Computer Science / Engineering, Durham University, Durham, UK. E-mail: [email protected].
Abstract: We evaluate the impact of denoising and Metal Artefact Reduction (MAR) on 3D object segmentation and classification in low-resolution, cluttered dual-energy Computed Tomography (CT). To this end, we present a novel 3D materials-based segmentation technique based on the Dual-Energy Index (DEI) to automatically generate subvolumes for classification. Subvolume classification is performed using an extension of Extremely Randomised Clustering (ERC) forest codebooks, constructed using dense feature-point sampling and multiscale Density Histogram (DH) descriptors. Within this experimental framework, we evaluate the impact on classification accuracy and computational expense of pre-processing by intensity thresholding, Non-Local Means (NLM) filtering, Linear Interpolation-based MAR (LIMar) and Distance-Driven MAR (DDMar) in the domain of 3D baggage security screening. We demonstrate that basic NLM filtering, although removing fewer artefacts, produces state-of-the-art classification results comparable to the more complex DDMar but at a significant reduction in computational cost - bringing into question the importance (in terms of automated CT analysis) of computationally expensive artefact reduction techniques. Overall, it was found that the use of MAR pre-processing approaches produced only a marginal improvement in classification performance (< 1%) at considerable additional computational cost (> 10×) when compared to NLM pre-processing.
Keywords: Denoising, Metal artefact reduction, classification, segmentation, Dual-energy Computed Tomography, DECT
DOI: 10.3233/XST-180411
Journal: Journal of X-Ray Science and Technology, vol. 27, no. 1, pp. 51-72, 2019
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]