Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Yang, Fu-Qiang | Zhang, Ding-Hua | Huang, Kui-Dong; * | Yang, Ya-Fei | Liao, Jin-Ming
Affiliations: Key Lab of Contemporary Design and Integrated Manufacturing Technology, Ministry of Education, Northwestern Polytechnical University, Xi’an, China
Correspondence: [*] Corresponding author: Kui-Dong Huang, Key Lab of Contemporary Design and Integrated Manufacturing Technology, Ministry of Education, Northwestern Polytechnical University, Xi’an 710072, China. E-mail: [email protected].
Abstract: This study aims to investigate and test a new image reconstruction algorithm applying to the low-signal projections to generate high quality images by reducing the artifacts and noise in the cone-beam computed tomography (CBCT). For the low-signal and noisy projections, a multiple sampling method is first utilized in projection domain to suppress environmental noise, which guarantees the accuracy of the data for reconstruction, simultaneously. Next, a fuzzy entropy based method with block matching 3D (BM3D) filtering algorithm is employed to improve the image quality to reduce artifacts and noise in image domain. Then, simulation studies on polychromatic spectrum were performed to evaluate the performance of the proposed new algorithm. Study results demonstrated significant improvement in the signal-to-noise ratios (SNRs) and contrast-to-noise ratios (CNRs) of the images reconstructed using the new algorithm. SNRs and CNRs of the new images were averagely 40% and 20% higher than those of the previous images reconstructed using the traditional algorithms, respectively. As a result, since the new image reconstruction algorithm effectively reduced the artifacts and noise, and produced images with better contour and grayscale distribution, it has the potential to improve image quality using the original CBCT data with the low and missing signals.
Keywords: Low-signal projections, noise reduction, fuzzy entropy, block matching 3D filtering
DOI: 10.3233/XST-17285
Journal: Journal of X-Ray Science and Technology, vol. 26, no. 2, pp. 227-240, 2018
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]