Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Abbas, Sajid | Min, Jonghwan | Cho, Seungryong
Affiliations: Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
Note: [] Corresponding author: Seungryong Cho, Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea. E-mail: [email protected]
Abstract: Computed tomography (CT) is widely used in medicine for diagnostics or for image-guided therapies, and is also popular in industrial applications for nondestructive testing. CT conventionally requires a large number of projections to produce volumetric images of a scanned object, because the conventional image reconstruction algorithm is based on filtered-backprojection. This requirement may result in relatively high radiation dose to the patients in medical CT unless the radiation dose at each view angle is reduced, and can cause expensive scanning time and efforts in industrial CT applications. Sparse- view CT may provide a viable option to address both issues including high radiation dose and expensive scanning efforts. However, image reconstruction from sparsely sampled data in CT is in general very challenging, and much efforts have been made to develop algorithms for such an image reconstruction problem. Image total-variation minimization algorithm inspired by compressive sensing theory has recently been developed, which exploits the sparseness of the image derivative magnitude and can reconstruct images from sparse-view data to a similar quality of the images conventionally reconstructed from many views. In successive CT scans, prior CT image of an object and its projection data may be readily available, and the current CT image may have not much difference from the prior image. Considering the sparseness of such a difference image between the successive scans, image reconstruction of the difference image may be achieved from very sparsely sampled data. In this work, we showed that one can further reduce the number of projections, resulting in a super-sparse scan, for a good quality image reconstruction with the aid of a prior data. Both numerical and experimental results are provided.
Keywords: Computed tomography (CT), sparse-view CT, total-variation (TV), prior image, compressive sensing (CS), low-dose CT
DOI: 10.3233/XST-130367
Journal: Journal of X-Ray Science and Technology, vol. 21, no. 1, pp. 71-83, 2013
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]