Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Benítez, Ricardo Betancourt; | Ning, Ruola | Conover, David | Liu, Shaohua
Affiliations: Department of Imaging Sciences, University of Rochester Medical Center, Rochester, NY 14642, USA | Department of Physics and Astronomy, University of Rochester. Rochester, NY 14627, USA
Note: [] Corresponding author. E-mail: [email protected]
Abstract: The Noise Power Spectrum (NPS) is a function that yields information about the spatial frequency composition of noise in images obtained by a system. It is evaluated by calculating the absolute value squared of the noise image and normalizing it with respect to the voxel and matrix sizes. Consequently, the NPS has been one of the physical characteristics that is commonly used to quantitatively measure the physical performance of a system. In this article, we evaluated the NPS of a Cone Beam CT Breast Imaging system by considering the following factors. First, we evaluated its symmetry around the x- and y-axis along with the influence of the cone angle and the matrix size on the NPS. Then, an analytical curve was suggested to best represent the NPS. Second, we analyzed the influence on the NPS of a set of seven parameters, namely the pixel size, exposure level, kVp value, number of projections acquired, voxel size, back projection filter, and the reconstruction algorithm employed. In addition, since the breast induced scattering in the image, we investigated the effect of the scattering-correction algorithm used in this system. Finally, we evaluated the uniformity of the NPS as a function of z with the matrix center located at {r = 0 mm}. The results demonstrate that the proposed curve is an ideal candidate that best represents the NPS. Hence, two parameters, the amplitude (A) and the width (σ), can be used to characterize the curve. The results also demonstrate that the voxel size and the cone angle are the only two parameters investigated in this study that do not affect the NPS. On the other hand, the matrix and pixel sizes, the back-projection filter and the reconstruction algorithm, the exposure level and the scattering correction, all influence the NPS. Finally, the results of the last part of this investigation suggest that this imaging system does not have a 3D isotropic noise distribution along the z-axis; yielding less noisy images at around z = 0.00 m and z = 80 mm.
Keywords: Cone beam computer tomography, noise power spectrum, cone beam flat panel detector
DOI: 10.3233/XST-2009-0213
Journal: Journal of X-Ray Science and Technology, vol. 17, no. 1, pp. 17-40, 2009
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]