Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Wu, Xizeng | Liu, Hong
Affiliations: Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA | Center for Bioengineering and School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK 73019, USA
Abstract: The in-line phase-contrast imaging has great potential for clinical imaging applications. This work presents a general theoretical formalism for the in-line phase-contrast imaging. The theoretical formalism developed in this work is derived by taking a new strategy to calculate the Fourier transform of image intensity directly. Different from the transport of intensity equation (TIE) formalism for phase-contrast imaging in literature [6], this general formalism covers both the near field regime and the holography regime of phase-contrast imaging. The image intensity formulas have been derived in both the image space and frequency space. Especially our results show that the Fresnel diffraction image intensity is a sum of convolutions of the cosine- and sine-Fresnel filters with the object attenuation A_0^2(x) and attenuated phase A_0^2(x)φ(x), respectively. The Pogany-Gao-Wilkins (PGW) formalism is recovered as a special case of our general formalism. In addition, in the low-resolution approximation, the general formula is reduced a spherical wave-generalization of the TIE-based formula for phase-contrast imaging. This spherical wave-generalization will be useful for phase-contrast imaging with a micro-focus x-ray tube. The transition of the formalism from 1-D to 2-D cases has been provided as well.
Journal: Journal of X-Ray Science and Technology, vol. 11, no. 1, pp. 33-42, 2003
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]