Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Zheng, Jinyang | Taleyarkhan, Rusi P. | Kim, Seokho H.
Affiliations: Zhejiang University, Yu Quan, Hangzhou, Zhejiang, 310027, China | Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
Note: [] Corresponding author.
Abstract: Rapid energy deposition into spallation source targets can lead to their temperature rise at enormous rates, giving rise to dynamic thermoelastic stresses. Understanding and predicting the resulting stress waves are crucial for robust design and safe operation of such devices. To simulate the thermal shock phenomenon accurately, many factors should be carefully considered, such as geometry, surface condition, energy deposition profile, equation of state, possible cavitation, viscous damping, rate-dependent constitutive equation, element size, and time step. In this paper a closed form expression for the induced stress in slender bars with distributed energy deposition has been directly derived; it is then used to test the accuracy of computed results with FEA codes. It was found that significant errors can occur unless care is taken to restrict element size and time step depending on the boundary conditions, steepness of temperature profiles and rise rate. Criteria have been proposed for determining the above two parameters. Numerical simulation with the well-established ANSYS5.5 code system showed that excellent results could be achieved if the proposed criteria are met.
Keywords: Thermal, Shock, Accelerator, Spallation, Neutron, Element, Time-step
DOI: 10.1080/10238160108200240
Journal: Journal of Neutron Research, vol. 9, no. 1, pp. 21-38, 2001
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]