Special issue: Computational intelligence models for image processing and information reasoning
Abstract
Computational Intelligence (CI) models comprise robust computing methodologies with a high level of machine learning quotient. CI models, in general, are useful for designing computerized intelligent systems/machines that possess useful characteristics mimicking human behaviors and capabilities in solving complex tasks, e.g., learning, adaptation, and evolution. Examples of some popular CI models include fuzzy systems, artificial neural networks, evolutionary algorithms, multi-agent systems, decision trees, rough set theory, knowledge-based systems, and hybrid of these models. This special issue highlights how different computational intelligence models, coupled with other complementary techniques, can be used to handle problems encountered in image processing and information reasoning.