Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Yu, Honglianga; b | Peng, Zhena; * | Wu, Zhaolianga | He, Ziruia | Huang, Chuna
Affiliations: [a] School of Management, Wuhan University of Science and Technology, Wuhan, China | [b] BIM Engineering Center of HuaZhong University of Science and Technology, Wuhan, China
Correspondence: [*] Corresponding author. Zhen Peng, School of Management, Wuhan University of Science and Technology, Wuhan, 430065, China. E-mail: [email protected].
Abstract: To address the existing shortcomings in the research on the coupling of safety risk factors in subway tunnel construction using the shallow-buried excavation method, this paper conducts a coupled analysis and dynamic simulation of the safety risks associated with this construction method. Firstly, by analyzing the mechanisms and effects of risk coupling in shallow-buried excavation construction of subway tunnels, this study divides the risk system into four risk subsystems (human, material, management, and environment), establishes an evaluation index system for the coupling of safety risks, calculates the comprehensive weight values of the risk indicators using the AHP-entropy weight method, and constructs a risk coupling degree model by combining the inverse cloud model and efficacy function. Subsequently, based on the principles of system dynamics, a causal relationship diagram and a system dynamics simulation model for the coupling of “human-material” risks in construction are established using Vensim PLE software. Finally, the case study of the underground excavation section of Chengdu Metro Line 2 is employed to perform dynamic simulation using the established model. By adjusting the relevant risk coupling coefficients and simulation duration, the impact of the coupling of various risk factors on the safety risk level of the human-material coupling system is observed. The simulation results demonstrate that: 1) Heterogeneous coupling of human and material risks has a particularly significant effect on the system’s safety risks; 2) Violations by personnel and initial support structure defects are key risk coupling factors. The findings of this study provide new insights for decision-makers to assess the safety risk of shallow-buried excavation construction in subway tunnel.
Keywords: Shallow-buried excavation method, risk coupling, coupling degree model, system dynamics, simulation analysis
DOI: 10.3233/JIFS-239674
Journal: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-17, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]