Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Jenefa, A.a | Taurshia, Antonya | Edward Naveen, V.b; * | Kuriakose, Bessy M.c | Thiyagu, T.M.a
Affiliations: [a] Division of Computer Science and Engineering, Karunya Institute of Technology and Sciences, India | [b] Department of Computer Science and Engineering, Sri Shakthi Institute of Engineering and Technology, India | [c] Department of Computer Science and Engineering, Malla Reddy Engineering College for Women, India
Correspondence: [*] Corresponding author. V. Edward Naveen, Department of Computer Science and Engineering, Sri Shakthi Institute of Engineering and Technology, India. E-mail: [email protected].
Abstract: In the realm of digital imaging, enhancing low-resolution images to high-definition quality is a pivotal challenge, particularly crucial for applications in medical imaging, security, and remote sensing. Traditional methods, primarily relying on basic interpolation techniques, often result in images that lack detail and fidelity. GANSharp introduces an innovative GAN-based framework that substantially improves the generator network, incorporating adversarial and perceptual loss functions for enhanced image reconstruction. The core issue addressed is the loss of critical information during down-sampling processes. To counteract this, we proposed a GAN-based method leveraging deep learning algorithms, trained using sets of both low- and high-resolution images. Our approach, which focuses on expanding the generator network’s size and depth and integrating adversarial and perceptual loss, was thoroughly evaluated on various benchmark datasets. The experimental results showed remarkable outcomes. On the Set5 dataset, our method achieved a PSNR of 34.18 dB and a SSIM of 0.956. Comparatively, on the Set14 dataset, it yielded a PSNR of 31.16 dB and an SSIM of 0.920, and on the B100 dataset, it achieved a PSNR of 30.51 dB and an SSIM of 0.912. These results were superior or comparable to those of existing advanced algorithms, demonstrating the proposed method’s potential in generating high-quality, high-resolution images. Our research underscores the potency of GANs in image super-resolution, making it a promising tool for applications spanning medical diagnostics, security systems, and remote sensing. Future exploration could extend to the utilization of alternative loss functions and novel training techniques, aiming to further refine the efficacy of GAN-based image restoration algorithms.
Keywords: Adversarial network training, enhanced image generation, image refinement, advanced neural architecture, improved resolution, quality assessment metrics, structural similarity evaluation
DOI: 10.3233/JIFS-238597
Journal: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-16, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]