Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Ngo, Quoc Trinh | Nguyen, Linh Quy | Vu, Trung Hieu | Nguyen, Long Khanh | Tran, Van Quan; *
Affiliations: University of Transport Technology, Thanh Xuan, Hanoi, Vietnam
Correspondence: [*] Corresponding author. Van Quan Tran, University of Transport Technology, No. 54 Trieu Khuc Street, Thanh Xuan District, Hanoi, Vietnam. E-mail: [email protected].
Abstract: Cemented paste backfill (CPB), a mixture of wet tailings, binding agent, and water, proves cost-effective and environmentally beneficial. Determining the Young modulus during CPB mix design is crucial. Utilizing machine learning (ML) tools for Young modulus evaluation and prediction streamlines the CPB mix design process. This study employed six ML models, including three shallow models Extreme Gradient Boosting (XGB), Gradient Boosting (GB), Random Forest (RF) and three hybrids Extreme Gradient Boosting-Particle Swarm Optimization (XGB-PSO), Gradient Boosting-Particle Swarm Optimization (GB-PSO), Random Forest-Particle Swarm Optimization (RF-PSO). The XGB-PSO hybrid model exhibited superior performance (coefficient of determination R2 = 0.906, root mean square error RMSE = 19.535 MPa, mean absolute error MAE = 13.741 MPa) on the testing dataset. Shapley Additive Explanation (SHAP) values and Partial Dependence Plots (PDP) provided insights into component influences. Cement/Tailings ratio emerged as the most crucial factor for enhancing Young modulus in CPB. Global interpretation using SHAP values identified six essential input variables: Cement/Tailings, Curing age, Cc, solid content, Fe2O3 content, and SiO2 content.
Keywords: Cemented paste backfill (CPB), young modulus, interpretable machine learning, cement/tailings, mix design
DOI: 10.3233/JIFS-237539
Journal: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-18, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]