Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Qin, Xiwena; b; * | Zhang, Siqia | Dong, Xiaoganga | Shi, Hongyua | Yuan, Lipinga
Affiliations: [a] School of Mathematics and Statistics, Changchun University of Technology, Changchun, China | [b] Graduate School, Changchun University of Technology, Changchun, China
Correspondence: [*] Corresponding author. Xiwen Qin, E-mail: [email protected].
Abstract: The research of biomedical data is crucial for disease diagnosis, health management, and medicine development. However, biomedical data are usually characterized by high dimensionality and class imbalance, which increase computational cost and affect the classification performance of minority class, making accurate classification difficult. In this paper, we propose a biomedical data classification method based on feature selection and data resampling. First, use the minimal-redundancy maximal-relevance (mRMR) method to select biomedical data features, reduce the feature dimension, reduce the computational cost, and improve the generalization ability; then, a new SMOTE oversampling method (Spectral-SMOTE) is proposed, which solves the noise sensitivity problem of SMOTE by an improved spectral clustering method; finally, the marine predators algorithm is improved using piecewise linear chaotic maps and random opposition-based learning strategy to improve the algorithm’s optimization seeking ability and convergence speed, and the key parameters of the spectral-SMOTE are optimized using the improved marine predators algorithm, which effectively improves the performance of the over-sampling approach. In this paper, five real biomedical datasets are selected to test and evaluate the proposed method using four classifiers, and three evaluation metrics are used to compare with seven data resampling methods. The experimental results show that the method effectively improves the classification performance of biomedical data. Statistical test results also show that the proposed PRMPA-Spectral-SMOTE method outperforms other data resampling methods.
Keywords: Biomedical data, mRMR, spectral clustering, SMOTE, marine predators algorithm
DOI: 10.3233/JIFS-237538
Journal: Journal of Intelligent & Fuzzy Systems, vol. 46, no. 4, pp. 8709-8728, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]