Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Hou, Xiaoyua | Luo, Chaoa; b; * | Gao, Baozhonga; b; *
Affiliations: [a] School of Information Science and Engineering, Shandong Normal University, Jinan, China | [b] Shandong Provincial Key Laboratory for Novel Distributed Computer Software Technology, Jinan, China
Correspondence: [*] Corresponding authors. Chao Luo, E-mail: [email protected]; Baozhong Gao, E-mail: [email protected].
Abstract: Candlesticks are widely used as an effective technical analysis tool in financial markets. Traditionally, different combinations of candlesticks have formed specific bullish/bearish patterns providing investors with increased opportunities for profitable trades. However, most patterns derived from subjective expertise without quantitative analysis. In this article, combining bullish/bearish patterns with ensemble learning, we present an intelligent system for making stock trading decisions. The Ensemble Classifier through Multimodal Perturbation (ECMP) is designed to generate a diverse set of precise base classifiers to further determine the candlestick patterns. It achieves this by: first, introducing perturbations to the sample space through bootstrap sampling; second, employing an attribute reduction algorithm based on neighborhood rough set theory to select relevant features; third, perturbing the feature space through random subspace selection. Ultimately, the trading decisions are guided by the classification outcomes of this procedure. To evaluate the proposed model, we apply it to empirical investigations within the context of the Chinese stock market. The results obtained from our experiments clearly demonstrate the effectiveness of the approach.
Keywords: Trading system, ensemble learning, multimodal perturbation method, neighborhood rough set theory
DOI: 10.3233/JIFS-237087
Journal: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-19, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]