Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Ma, Chengfei | Yang, Xiaolei | Lu, Heng | He, Siyuan | Liu, Yongshan; *
Affiliations: School of Information Science and Engineering, Yanshan University, Qinhuangdao, Hebei, China
Correspondence: [*] Corresponding author. Yongshan Liu, E-mail: [email protected].
Abstract: When calculating participants’ contribution to federated learning, addressing issues such as the inability to collect complete test data and the impact of malicious and dishonest participants on the global model is necessary. This article proposes a federated aggregation method based on cosine similarity approximation Shapley value method contribution degree. Firstly, a participant contribution calculation model combining cosine similarity and the approximate Shapley value method was designed to obtain the contribution values of the participants. Then, based on the calculation model of participant contribution, a federated aggregation algorithm is proposed, and the aggregation weights of each participant in the federated aggregation process are calculated by their contribution values. Finally, the gradient parameters of the global model were determined and propagated to all participants to update the local model. Experiments were conducted under different privacy protection parameters, data noise parameters, and the proportion of malicious participants. The results showed that the accuracy of the algorithm model can be maintained at 90% and 65% on the MNIST and CIFAR-10 datasets, respectively. This method can reasonably and accurately calculate the contribution of participants without a complete test dataset, reducing computational costs to a certain extent and can resist the influence of the aforementioned participants.
Keywords: Federated aggregation algorithm, contribution assessment, cosine similarity, Shapley value, equitable distribution
DOI: 10.3233/JIFS-236977
Journal: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-17, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]