Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Li, Yibing | Jiang, Shijin | Wang, Lei; *
Affiliations: Wuhan University of Technology, Wuhan, China
Correspondence: [*] Corresponding author. Lei Wang, E-mail: [email protected].
Abstract: With explosive growth of industrial big data, workshop scheduling faces problems such as high complexity, multi-dimensionality and low stability. Recent years, the wide application of deep learning provides new idea for scheduling problem. In this paper, a hybrid deep convolution network and differential evolution algorithm is proposed to solve the non-permutation flow shop scheduling problem with the goal of minimizing total completion time. Mining relationship between job attributes and process priority by deep convolutional network is core idea of this method. In this paper, differential evolution algorithm is used to obtain the data set for deep learning, and neighborhood search algorithm is used to optimize scheduling solution. Additionally, a method combining k-means algorithm and data statistics is proposed, which provides a reasonable way for priority division. The experimental results show that this method can greatly improve scheduling efficiency.
Keywords: Differential evolution algorithm, convolutional neural network, K-means algorithm; priority, flow shop scheduling
DOI: 10.3233/JIFS-236874
Journal: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-17, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]