Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Parthiban, P.; * | Vaisakhi, V.S.
Affiliations: Department of Electronics and Communication Engineering, Nehru Institute of Engineering and Technology, Coimbatore, Tamil Nadu
Correspondence: [*] Corresponding author. P. Parthiban, Assistant Professor, Department of Electronics and Communication Engineering, Nehru Institute of Engineering and Technology, Coimbatore, Tamil Nadu. E-mail [email protected].
Abstract: Wireless sensor network (WSN) collect and detect data in real time, but their battery life limits their lifetime. The CH selection process increases network overhead and reduces lifetime, but it considers node processing and energy limitations. To solve that problem this research methodology proposed Multi Objective Energy trust - Aware Optimal Clustering and Secure Routing (MOETAOCSR) protocol. At first, the trust factors such as direct and indirect factors are calculated. Thus, the calculated values are given as input to the SDLSTM to detect the malicious node and normal node. Here, the network deployment process is initially carried out and then the cluster is formed by HWF-FCM. From the clustered sensor nodes, the cluster head is selected using Golden Jackal Siberian Tiger Optimization (GJSTO) approach. Then, the selection of CH the paths are learned by using the Beta Distribution and Scaled Activation Function based Deep Elman Neural Network (BDSAF-DENN) and from the detected paths the optimal paths are selected using the White Shark Optimization (WSO). From the derived path sensed data securely transferred to the BS for further monitoring process using FPCCRSA. The proposed technique is implemented in a MATLAB platform, where its efficiency is assessed using key performance metrics including network lifetime, packet delivery ratio, and delay. Compared to existing models such as EAOCSR, RSA, and Homographic methods, the proposed technique achieves superior results. Specifically, it demonstrates a 0.95 improvement in throughput, 0.8 enhancement in encryption time, and a network lifetime of 7.4.
Keywords: Four point curve cryptographic and rivest shamir adleman (FPCCRSA), Haversine with weighted function based fuzzy c-means clustering (HWF-FCM), wireless sensor network, Cluster head (CH), sigmoid deep long short term memory (SDLSTM)
DOI: 10.3233/JIFS-236739
Journal: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-15, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]