Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Zhou, Yuzhong; * | Lin, Zhengping | Wu, Zhengrong | Zhang, Zifeng
Affiliations: Electric Power Research Institute, China Southern Power Grid Company, Guangdong Guangzhou, China
Correspondence: [*] Corresponding author. Yuzhong Zhou, Electric Power Research Institute, China Southern Power Grid Company, Guangdong Guangzhou 510663, China. E-mail: [email protected].
Abstract: Due to the complexity of the calculation process of the existing methods, the efficiency of data fusion of the power grid model is low. In order to improve the knowledge fusion effect of power grid model, this paper studied the knowledge fusion method of power grid model based on Seq2seq half pointer and half label method. The Text Rank algorithm is used to calculate the weight of semantic nodes of each grid model, and combined with the topological potential method, the semantic information of the grid model is extracted according to the final weight value, and the Seq2Seq semi-pointer semi-label model framework is constructed. The data of the scheduling automation system OMS and the production management system PMS are used as input. The extracted candidate mesh model semantics and the original mesh model semantics are encoded by Seq2Seq half-pointer half-label model. The semantic data of the power grid model is fused and sent to the Seq2Seq encoder. After the training is completed, the effective information is extracted from the power grid model through the Seq2Seq model to complete the knowledge fusion of the power grid model. Experimental results show that this method eliminates the redundant part of the basic attributes of each data source in the substation grid model after knowledge fusion, and the description of each basic attribute is more standardized, unified and perfect. Under different mesh model data dimensions, the support of the proposed method is all above 98%. The model trained by the proposed method tends to be stable after 120 iterations, and the precision, recall and F1 of the test set are 0.98, 0.93 and 0.91, respectively. At the same time, this method has high efficiency in the knowledge fusion processing of the power grid model, and its data processing speed is less than 160 s. The average integrity of the private data of the power grid model is 98.86%, indicating that the proposed method can better ensure the integrity of the data. Finally, compared with the application of other methods under different data amounts, the mean square error obtained by the proposed method is the smallest, indicating that the proposed method effectively improves the fusion accuracy.
Keywords: Grid model, knowledge fusion method, half label method, LSTM neural network, Seq2seq half pointer, TPC TextRank algorithm
DOI: 10.3233/JIFS-236465
Journal: Journal of Intelligent & Fuzzy Systems, vol. 46, no. 3, pp. 6939-6950, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]