Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Jenifer, L.; * | Radhika, S.
Affiliations: Department of Electrical and Electronics Engineering, Sathyabama Institute of Science and Technology, Chennai, India
Correspondence: [*] Corresponding author. L. Jenifer, Department of Electrical and Electronics Engineering, Sathyabama Institute of Science and Technology, Chennai, India. E-mail: [email protected].
Abstract: Cardiovascular disease is the leading cause of death and more than half million people were died around the world. However, cardiovascular health monitoring is crucial for effective heart disease diagnosis and management. In this paper, a novel deep learning-based YOLO-ECG model is proposed to ECG arrhythmia classification method for portable monitoring. Initially, the ECG signals are gathered using 12-lead electrodes in the real time and these signals are denoised using two-dimensional stationary wavelet transform (2D-SWT). In SWT, zeros are inserted between filter taps rather than decimal points to eliminate repetitions and increase robustness. The denoised ECG signals are fed into the deep learning-based YOLO network with Gaussian error linear unit (GELU) activation function for detecting the ECG abnormalities of arrythmia. ECG waveforms are analyzed for the local fractal dimension at each sample point before heartbeat waveforms are extracted within a set length window. A squeeze and excitation attention (SEAN) module is introduced in the YOLO network for selecting size of 1D convolution kernel, and the dimension is preserved during local cross-channel interactions, decrease network complexity and enhance model efficiency. The classification findings demonstrate that the proposed YOLO-ECG model performs better by ECG recordings from the MIT-BIH arrhythmia dataset. From the experimental analysis, the proposed YOLO-ECG model yields the overall accuracy of 99.16% for efficient classification of arrythmia ECG signals.
Keywords: Arrythmia classification, ECG signal, deep learning, 2D stationary wavelet transform, YOLO network
DOI: 10.3233/JIFS-235858
Journal: Journal of Intelligent & Fuzzy Systems, vol. 46, no. 1, pp. 2495-2505, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]