Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Sakthimohan, M.a; * | Deny, J.a | Rani, G. Elizabethb
Affiliations: [a] Department of Electronics and Communication Engineering, Kalasalingam Academy of Research and Education, Tamil Nadu, India | [b] Department of Computer Science and Engineering, Kalaignar Karunanidhi Institute of Technology, Coimbatore, Tamil Nadu, India
Correspondence: [*] Corresponding author. M. Sakthimohan, Department of Electronics and Communication Engineering, Kalasalingam Academy of Research and Education, Tamil Nadu, India. E-mail: [email protected].
Abstract: In general, wireless sensor networks are used in various industries, including environmental monitoring, military applications, and queue tracking. To support vital applications, it is crucial to ensure effectiveness and security. To prolong the network lifetime, most current works either introduce energy-preserving and dynamic clustering strategies to maintain the optimal energy level or attempt to address intrusion detection to fix attacks. In addition, some strategies use routing algorithms to secure the network from one or two attacks to meet this requirement, but many fewer solutions can withstand multiple types of attacks. So, this paper proposes a secure deep learning-based energy-efficient routing (SDLEER) mechanism for WSNs that comes with an intrusion detection system for detecting attacks in the network. The proposed system overcomes the existing solutions’ drawbacks by including energy-efficient intrusion detection and prevention mechanisms in a single network. The system transfers the network’s data in an energy-aware manner and detects various kinds of network attacks in WSNs. The proposed system mainly comprises two phases, such as optimal cluster-based energy-aware routing and deep learning-based intrusion detection system. Initially, the cluster of sensor nodes is formed using the density peak k-mean clustering algorithm. After that, the proposed system applies an improved pelican optimization approach to select the cluster heads optimally. The data are transmitted to the base station via the chosen optimal cluster heads. Next, in the attack detection phase, the preprocessing operations, such as missing value imputation and normalization, are done on the gathered dataset. Next, the proposed system applies principal component analysis to reduce the dimensionality of the dataset. Finally, intrusion classification is performed by Smish activation included recurrent neural networks. The proposed system uses the NSL-KDD dataset to train and test it. The proposed one consumes a minimum energy of 49.67 mJ, achieves a better delivery rate of 99.92%, takes less lifetime of 5902 rounds, 0.057 s delay, and achieves a higher throughput of 0.99 Mbps when considering a maximum of 500 nodes in the network. Also, the proposed one achieves 99.76% accuracy for the intrusion detection. Thus, the simulation outcomes prove the superiority of the proposed SDLEER system over the existing schemes for routing and attack detection.
Keywords: Wireless sensor networks, optimal cluster-based energy aware routing, intrusion detection system, cluster head selection, routing, dimensionality reduction, and deep learning
DOI: 10.3233/JIFS-235512
Journal: Journal of Intelligent & Fuzzy Systems, vol. 46, no. 4, pp. 8587-8603, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]