Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Yu, Xingpinga; * | Yang, Yangb
Affiliations: [a] College of Music and Dance, Huagiao University, Xiamen, China | [b] College of Engineering, Huaqiao University, Quanzhou, China
Correspondence: [*] Corresponding author. Xingping Yu, College of Music and Dance, Huagiao University, Xiamen, 361021, China. E-mail: [email protected].
Abstract: The rapid advancement of communication and information technology has led to the expansion and blossoming of digital music. Recently, music feature extraction and classification have emerged as a research hotspot due to the difficulty of quickly and accurately retrieving the music that consumers are looking for from a large volume of music repositories. Traditional approaches to music classification rely heavily on a wide variety of synthetically produced aural features. In this research, we propose a novel approach to selecting the musical genre from user playlists by using a classification and feature selection machine learning model. To filter, normalise, and eliminate missing variables, we collect information on the playlist’s music genre and user history. The characteristics of this data are then selected using a convolutional belief transfer Gaussian model (CBTG) and a fuzzy recurrent adversarial encoder neural network (FRAENN). The experimental examination of a number of music genre selection datasets includes measures of training accuracy, mean average precision, F-1 score, root mean squared error (RMSE), and area under the curve (AUC). Results show that this model can both create a respectable classification result and extract valuable feature representation of songs using a wide variety of criteria.
Keywords: Music genre selection, user playlists, machine learning, classification, feature selection
DOI: 10.3233/JIFS-235478
Journal: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-12, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]