Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Zhao, Bina; b | Cao, Weia | Zhang, Jiquna | Gao, Yilonga; c; * | Li, Bina | Chen, Fengmeia
Affiliations: [a] School of Information Science and Engineering, Linyi University, Linyi, China | [b] Linyi New Smart City Research Institute, Linyi, China | [c] Shandong Linchuang Shugu, Information Technology Co., Ltd, Linyi, China
Correspondence: [*] Corresponding author. Yilong Gao, School of Information Science and Engineering, Linyi University, Linyi, China. E-mail: [email protected].
Abstract: Aiming at the issue that the current click-through rate prediction methods ignore the varying impacts of different input features on prediction accuracy and exhibit low accuracy when dealing with large-scale data, a click-through rate prediction method (GBIFM) which combines Gradient Boosting Decision Tree (GBDT) and Input-aware Factorization Machine (IFM) is proposed in this paper. The proposed GBIFM method employs GBDT for data processing, which can flexibly handle various types of data without the need for one-hot encoding of discrete features. An Input-aware strategy is introduced to refine the weight vector and embedding vector of each feature for different instances, adaptively learning the impact of each input vector on feature representation. Furthermore, a fully connected network is incorporated to capture high-order features in a non-linear manner, enhancing the method’s ability to express and generalize complex structured data. A comprehensive experiment is conducted on the Criteo and Avazu datasets, the results show that compared to typical methods such as DeepFM, AFM, and IFM, the proposed method GBIFM can increase the AUC value by 10% –12% and decrease the Logloss value by 6% –20%, effectively improving the accuracy of click-through rate prediction.
Keywords: Click-through rate estimation, GBIFM, GBDT, IFM
DOI: 10.3233/JIFS-234713
Journal: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-13, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]