Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Mahalakshmi, G.; * | Uma, E.
Affiliations: Department of Information Science and Technology, Anna University, Chennai, India
Correspondence: [*] Corresponding author. G. Mahalakshmi, Department of Information Science and Technology, Anna University, Chennai, India. E-mail: [email protected].
Abstract: Intelligent Transportation Systems have become integral to daily life, with VANETs (vehicular ad-hoc networks) playing the pivotal role. VANETs, the subsets of MANETs, employ vehicles as nodes to establish intelligent transport systems. However, due to critical applications such as military use, these networks are susceptible to attacks. With features like high mobility, dynamic network topology, and coverage issues, security breaches are a concern. This necessitates a secure routing algorithm to mitigate attacks and ensure message delivery. In our study, we utilize the UNSW-NB15 intrusion detection dataset to develop training and testing models. Our proposed novel intrusion detection system employs a feature selection algorithm that prioritizes significant arriving traffic attributes. This algorithm enhances abnormal activity detection while minimizing associated features. To achieve this, we modify the Conditional Random Field algorithm with fuzzy-based rules, resulting in a more efficient selection of influential and contributing features for detecting attacks such as DoS, Worms, Fuzzers, and Shellcode. Through appropriate feature selection using the modified Conditional Random Field and Support Vector Machine classification system in our experiments, we demonstrate a notable increase in security by reducing the false positive rate. Additionally, our approach excels in detecting accuracy of Fuzzers (98.86%), DoS (98.80%), Worms (34.45%), and Shellcode (89.308%), ultimately enhancing network performance. These findings underscore the effectiveness of our proposed method in enhancing intrusion detection and overall network efficiency.
Keywords: Vehicular ad-hoc networks, intrusion detection, feature selection, classification
DOI: 10.3233/JIFS-234192
Journal: Journal of Intelligent & Fuzzy Systems, vol. 46, no. 2, pp. 5441-5453, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]