Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Xiao, Yanjuna; b; c; * | Li, Ruia; 1 | Zhao, Yuea | Wang, Xiaolianga | Liu, Weilinga; 1 | Peng, Kaia; 1 | Wan, Fenga
Affiliations: [a] School of Mechanical Engineering, Hebei University of Technology, Tianjin, China | [b] Career Leader Intelligent Control Automation Company, Suqian, Jiangsu Province, China | [c] Tianjin Key Lab Power Transmiss & Safety Technol, Department State Key Lab Reliabil & Intellectual Elect, Tianjin, China
Correspondence: [*] Corresponding author. Yanjun Xiao, E-mail: [email protected].
Note: [1] These authors contributed equally to this work.
Abstract: The rapier loom works in a complex environment and operates at high speeds. It is inevitable that its performance will deteriorate during the production process, which in turn will cause faults. The development of maintenance has undergone the transition from “regular maintenance” and “post-event maintenance” to “predictive maintenance”. In order to achieve the synergistic optimization goal of ensuring operational safety and reducing operational costs, a predictive maintenance method driven by the fusion of digital twin and deep learning is proposed based on the idea of “combining the real with the virtual and controlling the real”. Firstly, a digital twin system structure model of rapier weaving machine is constructed, and the overall architecture of digital twin is proposed according to the full operation cycle of rapier weaving machine. Then, the digital twin-driven process parameter evaluation and prediction and health state evaluation and prediction are investigated separately. In order to achieve the evaluation and prediction of process parameters to ensure the efficiency of weaving machine operation, the prediction method of IWOA optimized BP neural network driven by twin data is proposed and the model is updated and optimized based on the martingale distance approach. In order to achieve health state assessment and prediction, we use health index as an evaluation index to characterize the health condition of spindles, and use BiLSTM network to achieve prediction of remaining spindle life and then make maintenance decisions. The results show that there are greater advantages to combining deep learning and digital twin technology for intelligent predictive maintenance of rapier loom.
Keywords: Digital twin, predictive maintenance, deep learning, rapier loom
DOI: 10.3233/JIFS-233863
Journal: Journal of Intelligent & Fuzzy Systems, vol. 46, no. 4, pp. 9409-9430, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]