Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Yu, Zhiqiang | Wang, Ting | Liu, Shihu | Tan, Xuewen; *
Affiliations: School of Mathematics and Computer Science, Yunnan Minzu University, Kunming, China
Correspondence: [*] Corresponding author. Xuewen Tan. E-mail: [email protected].
Abstract: As the typical distant language pair, Chinese and Vietnamese vary widely in syntactic structure, which significantly influences the performance of Chinese-Vietnamese machine translation. To address this problem, we present a simple approach with a pre-reordering model for closing syntactic gaps of the Chinese-Vietnamese language pair. Specifically, we first propose an algorithm for recognizing the modifier inverse, one of the most representative syntactic different in Chinese-Vietnamese language pair. Then we pre-train a pre-reordering model based on the former recognition algorithm and incorporate it into the attention-based translation framework for syntactic different reordering. We conduct empirical studies on Chinese-Vietnamese neural machine translation task, the results show that our approach achieves average improvement of 2.75 BLEU points in translation quality over the baseline model. In addition, the translation fluency can be significantly improved by over 2.44 RIBES points.
Keywords: Neural machine translation, linguistic difference, Chinese-Vietnamese
DOI: 10.3233/JIFS-233762
Journal: Journal of Intelligent & Fuzzy Systems, vol. 46, no. 3, pp. 5533-5544, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]