Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Ding, Huafenga | Shang, Junyana | Zhou, Guohuaa; b; *
Affiliations: [a] School of Intelligent Control, Changzhou Vocational Institute of Industry Technology, Changzhou, China | [b] School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou, China
Correspondence: [*] Corresponding author. Guohua Zhou, E-mail: [email protected].
Abstract: Emotional state recognition is an important part of emotional research. Compared to non-physiological signals, the electroencephalogram (EEG) signals can truly and objectively reflect a person’s emotional state. To explore the multi-frequency band emotional information and address the noise problem of EEG signals, this paper proposes a robust multi-frequency band joint dictionary learning with low-rank representation (RMBDLL). Based on the dictionary learning, the technologies of sparse and low-rank representation are jointly integrated to reveal the intrinsic connections and discriminative information of EEG multi-frequency band. RMBDLL consists of robust dictionary learning and intra-class/inter-class local constraint learning. In robust dictionary learning part, RMBDLL separates complex noise in EEG signals and establishes clean sub-dictionaries on each frequency band to improve the robustness of the model. In this case, different frequency data obtains the same encoding coefficients according to the consistency of emotional state recognition. In intra-class/inter-class local constraint learning part, RMBDLL introduces a regularization term composed of intra-class and inter-class local constraints, which are constructed from the local structural information of dictionary atoms, resulting in intra-class similarity and inter-class difference of EEG multi-frequency bands. The effectiveness of RMBDLL is verified on the SEED dataset with different noises. The experimental results show that the RMBDLL algorithm can maintain the discriminative local structure in the training samples and achieve good recognition performance on noisy EEG emotion datasets.
Keywords: Multi-frequency band, dictionary learning, electroencephalogram, noise data, low-rank representation
DOI: 10.3233/JIFS-233753
Journal: Journal of Intelligent & Fuzzy Systems, vol. 46, no. 4, pp. 8075-8088, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]