Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Subburaj, S.a; * | Murugavalli, S.b | Muthusenthil, B.c
Affiliations: [a] Department of Computer Science and Engineering, Anna University, Chennai, India | [b] Department of Computer Science and Engineering, Panimalar Engineering College Chennai City Campus, Chennai, India | [c] Department of Computer Science and Engineering, SRM Valliammai Engineering College, SRM Nagar, Kattankulathur, India
Correspondence: [*] Corresponding author. S. Subburaj, Research Scholar, Department of Computer Science and Engineering, Anna University, Chennai, India. E-mail: [email protected].
Abstract: SLR, which assists hearing-impaired people to communicate with other persons by sign language, is considered as a promising method. However, as the features of some of the static SL could be the same as the feature in a single frame of dynamic Isolated Sign Language (ISL), the generation of accurate text corresponding to the SL is necessary during the SLR. Therefore, Edge-directed Interpolation-based Recurrent Neural Network (EI-RNN)-centered text generation with varied features of the static and dynamic Isolated SL is proposed in this article. Primarily, ISL videos are converted to frames and pre-processed with key frame extraction and illumination control. After that, the foreground is separated with the Symmetric Normalised Laplacian-centered Otsu Thresholding (SLOT) technique for finding accurate key points in the human pose. The human pose’s key points are extracted with the Media Pipeline Holistic (MPH) pipeline approach and to improve the features of the face and hand sign, the resultant frame is fused with the depth image. After that, to differentiate the static and dynamic actions, the action change in the fused frames is determined with a correlation matrix. After that, to engender the output text for the respective SL, features are extracted individually as of the static and dynamic frames. It is obtained from the analysis that when analogized to the prevailing models, the proposed EI-RNN’s translation accuracy is elevated by 2.05% in INCLUDE 50 Indian SL based Dataset and Top 1 Accuracy 2.44% and Top 10 accuracy, 1.71% improved in WLASL 100 American SL.
Keywords: Isolated Sign Language (ISL), Sign Language Recognition (SLR), Edge directed Interpolation based Recurrent Neural Network (EIRNN), text generation, word level sign language, Media Pipeline Holistic (MPH)
DOI: 10.3233/JIFS-233610
Journal: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-15, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]