Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Salem, Dina Ahmed; * | Hassan, Nesma AbdelAziz | Hamdy, Razan Mohamed
Affiliations: Computer and Software Engineering Department, Misr University for Science and Technology, Giza, Egypt
Correspondence: [*] Corresponding author. Dina Ahmed Salem. E-mail: [email protected].
Abstract: Smart farming, also known as precision agriculture or digital farming, is an innovative approach to agriculture that utilizes advanced technologies and data-driven techniques to optimize various aspects of farming operations. One smart farming activity, fruit classification, has broad applications and impacts across agriculture, food production, health, research, and environmental conservation. Accurate and reliable fruit classification benefits various stakeholders, from farmers and food producers to consumers and conservationists. In this study, we conduct a comprehensive comparative analysis to assess the performance of a Convolutional Neural Network (CNN) model in conjunction with four transfer learning models: VGG16, ResNet50, MobileNet-V2, and EfficientNet-B0. Models are trained once on a benchmark dataset called Fruits360 and another time on a reduced version of it to study the effect of data size and image processing on fruit classification performance. The original dataset reported accuracy scores of 95%, 93%, 99.8%, 65%, and 92.6% for these models, respectively. While accuracy increased when trained on the reduced dataset for three of the employed models. This study provides valuable insights into the performance of various deep learning models and dataset versions, offering guidance on model selection and data preprocessing strategies for image classification tasks.
Keywords: Artificial intelligence, convolutional neural network, Fruit360, machine learning, transfer learning
DOI: 10.3233/JIFS-233514
Journal: Journal of Intelligent & Fuzzy Systems, vol. 46, no. 4, pp. 7791-7803, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]