Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Chenmin, Nia; b; * | Marsani, Muhammad Fadhilb | Shan, Fam Peib
Affiliations: [a] School of International Business, Zhejiang Yuexiu University, Shaoxing, China | [b] School of Mathematical Sciences, Universiti Sains Malaysia, USM Penang, Malaysia
Correspondence: [*] Corresponding author. Ni Chenmin, School of International Business, Zhejiang Yuexiu University, Shaoxing, 312000, China. E-mail: [email protected].
Abstract: Traffic sign recognition is of great significance to promote traffic sustainability and maintain traffic safety. GPS monitoring systems and advanced autonomous vehicles are often heavily reliant on camera imagery. Algorithms based on dark channel prior are susceptible to color distortion when processing traffic images containing bright sky or high-brightness areas, which can negatively impact the identification of traffic signals and signage located in elevated positions. To address this issue, this paper proposes a dehazing algorithm (SRSTO) that combines sky region segmentation and transmittance optimization. Firstly, the gradient, brightness and saturation information are calculated, followed by the construction of a threshold function used in area segmentation. This approach is utilized to partition the image into areas not containing sky highlights and the area that contains them. Subsequently, the dark channel images of the sky and the non-sky regions are acquired, morphological operations are further performed in layers and blocks, and then the atmospheric scattered light value is calculated. Secondly, the functional relationship between the transmittance of the sky region and the brightness of the image is constructed, the transmittance of the sky and the non-sky region are optimized, and the transmittance map is further improved by using guided filtering. A simulated annealing algorithm is employed to intelligently optimize parameters such as sky segmentation threshold and sky brightness area transmittance, followed by improving the adaptability of the algorithm. Finally, combined with Gaussian filtering and Sobel edge enhancement, the image brightness is further adjusted. Using Information Entropy and NIQE as objective evaluation indexes, combined with subjective evaluation, it is concluded that the proposed method has good convergence and self-adaptive ability, and the objective indexes and subjective effects are better, especially for the hazed images containing air traffic signs.
Keywords: Haze removal, traffic image, sky region segmentation, transmission optimization, simulated annealing algorithm
DOI: 10.3233/JIFS-233433
Journal: Journal of Intelligent & Fuzzy Systems, vol. 46, no. 1, pp. 1005-1017, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]